Identificato un tassello decisivo nei meccanismi all’origine dell’atrofia muscolare spinale
Una proteina di nome B-Raf è il punto centrale di una estesa rete di proteine che contribuiscono alla degenerazione dei motoneuroni nelle persone affette da atrofia muscolare spinale. È quanto ha scoperto un gruppo di ricercatori dell’Istituto di bioscienze e biorisorse del Consiglio nazionale delle ricerche di Napoli (Cnr-Ibbr), in collaborazione con Peter Claus dell’Hannover Medical School, in uno studio pubblicato su Pnas e cofinanziato dalla Fondazione Telethon.
L’atrofia muscolare spinale (Sma) è una malattia genetica rara causata da bassi livelli della proteina SMN e caratterizzata dalla morte selettiva dei motoneuroni spinali, neuroni deputati al controllo dei muscoli. La Sma colpisce circa 1 neonato ogni 10.000 e costituisce la più comune causa genetica di morte infantile.
I ricercato hanno usato un approccio innovativo detto di network biology, che consente di avere una visione globale di tutti i partner coinvolti in un dato processo biologico e permette di identificare rapidamente gli interruttori principali, da attivare o disattivare affinché quel processo sia modulato. «È un po’ come ricostruire la mappa delle varie linee della metropolitana ed identificare così le stazioni dove queste si intersecano, i cosiddetti hub: se si interviene sugli hub si avrà un effetto sull’intera rete», spiega Elia Di Schiavi ricercatore del Cnr-Ibbr e autore dello studio.
In questo lavoro, usando quattro diversi modelli Sma “in vivo” e “in vitro”, è stato quindi possibile chiarire la rete di segnalazione alterata nella malattia.
«Questa rete è strutturata in due cluster centrati sulle proteine AKT e 14-3-3ζ/δ, rispettivamente. I cluster sono collegati tra loro dalla proteina B-Raf, che lavora come hub principale. L'interazione diretta di B-Raf con 14-3-3ζ/δ è stata dimostrata essere cruciale per la sopravvivenza dei motoneuroni», continua Di Schiavi.
Ulteriori analisi hanno rivelato che entrambe le proteine erano poco espresse nei motoneuroni e nel midollo spinale di modelli murini nelle fasi pre-sintomatiche della malattia.
«Utilizzando colture cellulari derivate da pazienti affetti da Sma è stato possibile confermare un simile pattern con una bassa espressione delle due proteine», aggiunge il ricercatore Cnr-Ibbr. «Ma la cosa ancor più interessante è che questo meccanismo è perfettamente conservato nell’evoluzione, poiché un modello Sma del verme nematode C. elegans ha mostrato ugualmente una minore espressione dell'omologo di B-Raf, chiamato lin-45, quando il gene Smn1 era silenziato».
Inoltre in questo piccolo verme così diverso dall’uomo è stato possibile prolungare la sopravvivenza dei motoneuroni aumentando l'espressione di B-Raf/lin-45, con conseguente miglioramento delle funzioni motorie.
«Il recupero è stato efficace anche dopo che la degenerazione dei motoneuroni era iniziata. Questo studio pone il fondamento per ulteriori analisi che possano far sperare nella possibilità di intervenire anche quando i sintomi della malattia comincino a manifestarsi e in maniera complementare ai trattamenti farmacologici attualmente utilizzati nella pratica clinica», conclude il ricercatore